
DOI: 10.46793/41DAS2025.007H 

IMPLEMENTATION AND PRACTICAL APPLICATION OF NON-EQUIVALENT BIAXIAL 

MEASUREMENTS FOR HYPERELASTIC MATERIALS

Kristóf HAVASI1, Attila KOSSA2 

1 0009-0009-9466-4636, Department of Applied Mechanics, Budapest University of Technology and 

Economics, University of Technology rkp. 3. Budapest, 1111, Hungary, E-mail: havasi@mm.bme.hu 

2 0000-0003-3638-3237, Department of Applied Mechanics, Budapest University of Technology and 

Economics, University of Technology rkp. 3. Budapest, 1111, Hungary, E-mail: kossa@mm.bme.hu 

1 Introduction 

In the case of hyperelastic material models, it is 

not possible to reliably fit the parameters of the 

constitutive model to general load cases from a 

single set of uniaxial measurements. In order to 

obtain a more accurate model, different 

measurements are used, but these are very complex 

and difficult to perform in most cases. 

The most commonly used measurement datasets 

for fitting are data from uniaxial and biaxial tensile 

tests and constrained uniaxial loading (planar 

tension), but due to the complexity of the 

measurement implementation, fitting is often done 

with less data. It can be seen that the stress-strain 

relationship obtained for the uniaxial and 

equibiaxial test cases envelops the case of planar 

tension from two sides, the application of which 

helps to define a better material model. Treloar's 

dataset also describes three different cases of 

experiments, in which the results of these tensile 

experiments were analysed [1]. However, if we 

perform biaxial measurements and can control the 

displacements along the two axes independently, we 

may be able to generate a new dataset that is neither 

uniaxial nor equibiaxial measurement data, this 

dataset describes an intermediate state. This way, 

we are also able to make other types of 

measurements in the same measurement setup, 

which can lead to a more accurate result when 

fitting a material model. 

2 Details of work 

In the present work, silicone specimens, which are 

capable of large elastic deformation, were used. 

These materials suffer negligible residual 

deformation even under high strain, and therefore, 

the mechanical behaviour can be well approximated 

by a hyperelastic material model [2]. For the 

measurements, we used an in-house developed 

biaxial material testing machine, which can be used 

to impose arbitrary independent displacements 

along the two axes using stepper motors, so that the 

specimen can be loaded to an arbitrary general 

biaxial stress state of our choice. A schematic 

illustration of the general biaxial in-plane loading 

case is shown in Fig. 1. 

Fig. 1 Schematic representation of the general biaxial 

in-plane loading case. 

During the measurements, the exact biaxial stress 

state we have prescribed is only present at the centre 

of the test specimen, so that the force and 

displacement quantities that can be easily measured 

physically are not sufficient for us to directly 

determine the numeric values we are looking for. 

However, knowing the load and the geometry of the 

specimen, it is possible to approximate the stress 

state using a stress distribution and a geometric 

factor [3,4]. A good approximation for the design 

and evaluation of the measurements is to assume the 

material to be incompressible. By imposing the 

strains along two perpendicular axes, we can 

determine the total deformation state for our load 

case at any instant. We can characterize a general 

biaxial stress case by its deformation gradient and 

stress tensor matrix, which can be written as 

𝑭 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆T

] ,    𝝈 = [
𝜎1 0 0
0 𝜎2 0
0 0 0

] , (1) 
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where 𝜆T is the transverse stretch. Note that

𝜆1𝜆2𝜆𝑇 = 1 for the incompressible case. If we

impose displacement along the two axes 

independently, we can also align the elongations, so 

we are free to impose any relationship between the 

stretch values 𝜆1 and 𝜆2. Performing the

measurements, we used a linear combination of the 

uniaxial and equibiaxial cases. The relationships for 

the principal stretches in this case are as follows: 

𝜆2 = (1 − 𝛼) ⋅ 𝜆1
−0.5 + 𝛼 ⋅ 𝜆1. (2) 

For 𝛼 = 0, we obtain uniaxial loading, while for 

𝛼 = 1, we obtain equibiaxial loading. It is important 

to note that in the case of planar tension loading, 

when using the above relationship, the stretch value 

in the 1-direction becomes a function of the 𝛼 

parameter, since for this loading mode 𝜆2 = 1.

Solving the above equation for 𝛼 yields 

𝛼 = (𝜆1 + √𝜆1 + 1)
−1

. (3) 

The resulting solution is illustrated in Fig. 2. Note 

that for 𝜆1 = 1, the value of 𝛼 is 1/3, while for

𝜆1 = 0, it is 1.

Fig. 2 Resulting values of the 𝛼 parameter in the case of 

planar tension. 

The stress solution for the general biaxial loading 

case can be derived analytically using the 𝛼 

parameter for most incompressible hyperelastic 

material models. This enables the parameter 

identification process to be carried out using closed-

form expressions, facilitating the optimization task. 

Measurements can be performed using various 

values of the 𝛼 parameter, thereby providing data 

corresponding to different loading conditions for 

the parameter fitting procedure. 

Although the 𝛼 parameter provides information 

about the loading mode, it does not directly indicate 

where the resulting stress state lies between uniaxial 

and equibiaxial stress conditions. To characterize 

the stress state, the stress triaxiality variable is a 

suitable choice. Stress triaxiality can be defined 

simply by relating the instantaneous hydrostatic 

stress to the instantaneous equivalent von Mises 

stress: 

𝜂 =
𝜎ℎ

𝜎𝑒𝑞
𝑣𝑀. (4) 

This variable is widely used in damage mechanics 

models but can also be advantageously applied in 

this context.  

3 Conclusions 

Within the framework of this research, we have 

defined a general biaxial stress state, which relates 

two commonly used cases with continuous 

transitions, and given the analytical solutions for 

these cases in terms of strain and stress. In addition, 

a measurement setup suitable for the case presented 

previously was set up, and a series of measurements 

were made and evaluated, so that we were able to 

build a finite element model by generating useful 

numerical data, fitting a material model to the 

material, and comparing the measured results with 

simulations. With the newly proposed procedure, 

we are able to investigate the behaviour of a 

material in several cases without changing the 

experimental setup many times, which allows us to 

characterise the material under investigation more 

accurately. 
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