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1. Introduction

Tape springs are thin, cylindrical shells that have

versatile usage, ranging from simple measuring 

tapes, through clockwork springs, up to space 

antennas, hinges and self-deploying structures. 

They provide easy and compact storage, yet they 

can be extended to be used as beam-like load 

bearing elements. Under opposite-sense bending 

load they can easily lose their stability in a snap-

through phenomenon. Although the same-sense 

bending theoretically also results in a snap-through, 

experience shows that this cannot be realized as a 

torsional buckling mode emerges earlier. The usual 

applications make use either of their storability 

[1,2], the snap-through phenomenon [3], or the 

propagating moment, as it provides a practically 

constant [4], curvature-independent bending 

characteristic. Although they can be used as load 

bearing construction elements, their stability under 

compressive loads (their buckling behavior) was not 

analyzed. To plan measurements later, it was 

necessary to perform preliminary investigations to 

examine the expected behavior of these shell types. 

2. Modeling methods

As a first step of the research, an extensive finite

element analysis was performed on an arbitrary 

geometry to investigate the possible modes of 

stability loss. The finite element model is shown in 

Fig. 1. In its essence it corresponds to the basic 

Eulerian pinned-pinned boundary conditions, 

without restricting the torsion of the shell. The end 

cross-sections of the beam are not allowed to 

deform; their degrees of freedom are kinematically 

coupled to the reference nodes. As in a real scenario 

it is hard to accurately center the load to the cross-

section centroid, the effect of the load position was 

also investigated. The reference nodes were 

simultaneously moved around in the 𝑥 − 𝑦 plane on 

a grid shown in Fig. 2, and the buckling analysis was 

performed with a z directional, 1N compressive 

load. The first 10 eigenvalues were extracted in the 

0-300 range.

Fig. 1. The FE model and the load case 

Fig. 2. The reference node locations and shell cross-

section geometry 
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As the beam is prone to the local buckling of the 

cross-section, a nonlinear analysis was also 

performed on the shell with the same boundary 

conditions. For a stable simulation, the loading 

force was removed and replaced with a compressive 

displacement load. 

3. Results

The results of the linear buckling analysis for the

case when the reference nodes coincide with the 

cross-section centroid of the beam are shown in Fig. 

3. Unexpectedly, the first three modes of stability

loss include torsion, and only the fourth is the

thoroughly investigated bending mode.

Fig. 3. The first four linear buckling modes when 

the shell is loaded through the centroid 

The nonlinear solution led to a local buckling of 

the cross-section for every loading point, except for 

the centroid. The extracted critical force value was 

identified as the peak compressive load that the shell 

can withstand. To find the lowest critical force for 

each location, the first eigenvalue was plotted 

together with the results of the nonlinear 

simulations in Fig. 4. 

Fig. 4. Critical force values across the cross-

section plane for both calculation methods 

4. Conclusions

It was found that the critical force and the

buckling mode may significantly be affected by the 

location of load. It was shown that both linear 

buckling and nonlinear simulations must be 

performed to find the expected critical force map if 

it cannot be guaranteed that the loading force is 

located at the cross-section centroid. 
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