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1. Introduction

Gait stability is vital in musculoskeletal health,

directly influencing quality of life. Nonlinear met-

rics such as entropy and fractal dimension enhance 

understanding of gait stability beyond traditional 

measures, thus improving diagnostic and physical 

therapy assessments. Entropy metrics measure the 

regularity of time-series data as a number between 

0 and 2, with lower values signifying a more regular 

series. Fractal dimension quantifies the complexity 

and self-similarity of time-series data.  

This study aimed to determine which input vari-

able values influence approximate entropy (ApEn), 

sample entropy (SampEn), and Higuchi’s fractal di-

mension (HFD) parameters’ effectiveness for eval-

uating the stability of various individuals. 

2. Materials and methodology

Eighty-one participants (ages 14–84, weights

43–124 kg, heights 149–189 cm) performed self-

paced walking trials on an instrumented treadmill; 

ten were healthy and 71 had spinal or lower limb 

orthopaedic issues. Self-paced treadmill walking 

was recorded on an instrumented Zebris FDM-

THM treadmill (Zebris Medical GmbH) for 2 

minutes after a 5-minute accommodation to estab-

lish a stable gait. The trials were recorded with a 

sampling frequency of 100 Hz. 

The recorder ground reaction force data enabled 

calculation of centre of pressure (CoP) coordinates 

during the recorded time interval in both the antero-

posterior (AP) and mediolateral (ML) directions. 

The coordinates were filtered with a zero-phase 6th-

order Butterworth filter with a cut-off frequency of 

20 Hz. Since the trials were self-paced, participants 

walked at different speeds, leading to variations in 

the number of gait cycles. To eliminate the impact 

of varying gait cycle count on the analysed nonlin-

ear metrics, each measurement was standardised by 

trimming and resampling to 45 gait cycles, equiva-

lent to 4500 data points. 

ApEn values were calculated using the corre-

sponding function from the MATLAB Predictive 

Maintenance Toolbox. The calculation required de-

fining an embedding dimension (𝑚), a time delay 

(𝜏), and a similarity criterion radius (𝑟), expressed 

as a percentage of the time series' standard deviation 

(STD) [1]. 𝜏 values were estimated using Average 

Mutual Information (AMI), selecting the first local 

minimum of AMI as the lag. 𝑚 was then estimated 

using the False Nearest Neighbour (FNN) algo-

rithm. 

After estimating and selecting the collective em-

bedding dimension and time delay values, the effect 

of 𝑟 was examined through iteration. In each direc-

tion, for every participant, the ApEn values were 

calculated for every 2% of the STD at a 2–100% in-

terval for the similarity radius. 

SampEn, a data-length-independent modifica-

tion of ApEn, required the same 𝑚 values but no 𝜏 

[2]. With the 𝑚 values already selected, 𝑟 was de-

termined using the same iterative method. The final 

variable values can be found in Table 1. 

Table 1. Determined input variables for the calculation 

of ApEn and SampEn. 
Parameter m [-] τ [-] r [% of STD] 

AP ApEn 4 19 20 

ML ApEn 4 26 15 

AP SampEn 4 - 20 

ML SampEn 4 - 10 

HFD values range from 1 to 2, where 1 corre-

sponds to a straight line and 2 to a line that is so 

complex that it fills the area of a two-dimensional 

plane [3]. Calculation requires defining the maxi-
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mum number of sub-series composed of the original 

time series, herein referred to as 𝑘max [4]. HFD val-

ues were calculated for all participants on an inter-

val of 4–200, in increments of four. HFD values 

reached their plateau around a 𝑘max of 60 in the AP

and a 𝑘max of 120 in the ML directions. All compu-

tational procedures, including parameter tuning 

were executed using MATLAB (The MathWorks 

Inc., Version R2023a). 

3. Results

The purpose of the study was to investigate how

the choice of input variables influences nonlinear 

metrics and their applicability to assessing gait sta-

bility. After providing a coherent method for calcu-

lating these metrics, it was important to evaluate 

how parameter tuning impacts the obtained results. 

To analyse these effects, another intentionally 

off-tuned dataset was created with respect to the in-

put parameters. Since most parameter values level 

out beyond certain input thresholds, further in-

creases would result in minimal variation. There-

fore, for calculating the off-tuned data set, much 

smaller input values were used than those originally 

determined. For the entropy-based metrics (ApEn 

and SampEn) the 𝑟 was set to 5% of the STD (both 

Ap and ML). In the case of the HFD, a 𝑘max value

of 20 was used. 

Comparisons between well- and poorly tuned 

datasets were conducted visually and statistically. 

For the visual method, we examined CoP trajecto-

ries of participants with the lowest and highest pa-

rameter values under each tuning condition. The sta-

tistical approach compared distribution shapes and 

outlier counts across calculation methods to deter-

mine tuning effects. 

Visual inspection of CoP trajectories at entropy 

extremes showed that tuned AP ApEn clearly differ-

entiated between participants: low values linked to 

short, irregular steps; high values to long, regular 

cycles. Similarly, higher ML ApEn values were usu-

ally paired with trajectories that had maintained a 

constant width. Poor tuning blurred these distinc-

tions, producing heterogeneous trajectories and un-

dermining interpretability. SampEn proved largely 

insensitive to tuning: extreme-value trajectories re-

tained their shapes but overlapped across methods. 

HFD’s fractal dimensions also distinguished gait 

types regardless of 𝑘max, although overlaps per-

sisted. Only with tuned inputs in the ML HFD did 

the end-value trajectories diverge more clearly, with 

high values corresponding to more consistent step 

widths. 

Statistical comparison of tuned versus off-tuned 

datasets showed that AP and ML ApEn distributions 

moved closer to normal when tuned, and AP ApEn’s 

outliers disappeared, improving data processability. 

SampEn showed mixed effects: tuned AP SampEn 

lost outliers but became less normal, while 

ML SampEn gained fewer outliers and retained 

near-normality. Tuning did not improve AP HFD’s 

distribution, but ML HFD became slightly more 

normal and cut outliers from three to two, hinting at 

a modest benefit. 

4. Conclusions

The present study aimed to find suitable calcula-

tion methods for ApEn, SampEn, and HFD as these 

nonlinear metrics lack standardized reference val-

ues for gait stability evaluation. The various input 

variables of these metrics were tuned specifically on 

data gathered from gait, and the effects of the tuning 

were determined via comparison with a purpose-

fully badly tuned dataset. The comparisons showed 

the large effect that input variable choice has on the 

final values and that the tuning had successfully re-

sulted in values suitable for evaluating gait stability. 

The dataset incorporated a heterogeneous popula-

tion, including both healthy participants and those 

with various musculoskeletal disorders, covering a 

broad range of age groups, weights, and heights. 
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