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1. Introduction

For reliable stability analysis of geotechnical

structures, accurate calibration of constitutive 

model parameters is essential. These parameters 

govern the simulated material response under load, 

and any uncertainty can lead to significant 

deviations in predicted behavior. 

Conventional parameter determination relies on 

experimental testing of soil samples, whereby 

stress–strain measurements are used to infer 

individual model parameters according to their 

constitutive definitions. However, this manual 

fitting process is complex and time-consuming, 

particularly for soils, which exhibit highly nonlinear 

behavior. 

To address these challenges, we propose an 

automated parameter identification procedure for 

constitutive models. The methodology is developed 

for the Modified Cam-Clay model (MCC), a widely 

adopted framework for simulating the mechanical 

response of soft clays and normally consolidated 

soils. 

The first part of this paper presents the 

theoretical foundations and the implicit stress 

integration algorithm for the MCC model, 

implemented within the PAK [1] finite element 

software. For automated identification [2], the same 

integration scheme is translated into Python and 

applied at the level of single integration point. This 

point-wise approach is justified for homogeneous 

stress states, such as those encountered in standard 

laboratory tests (e.g., oedometer and triaxial tests). 

In the second part of the paper, we describe the 

parameter identification program, which interfaces 

with the Python integration routine to perform 

optimization against experimental data. Finally, the 

developed identification algorithm is verified 

through a comparison of parameter estimates 

obtained from the PAK-based finite element 

implementation and those produced by the 

automated procedure. 

2. Theoretical basis of the Modified Cam-

Clay constitutive model

The yield surface of the MCC model [3] in space 

mq −  is shown in Fig. 1. 

Fig. 1. Modified Cam-Clay model yield surface 

The yield surface equation of MCC model is a 

function of stress states and has the form 

( )2 2

m o mf q M p = − − (1) 

In equation (1), the quantity M  represents the 

material parameter, while the quantities q  and 
m

are the stress deviator 

23 Dq J= (2) 

and mean stress 

m x y z   = + + (3) 

The quantity 0p defines the size of the yield surface 

according to the expression 
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where p

me is the increment of mean plastic strain, 

while 
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sk  = − (6) 

The current porosity, in expression (5) is calculated 

according to 

( )01 e 1
t t

Vet te e
+

+ = + − (7) 

where 0 e is the initial porosity of the material, 

while t d

Ve+  is the current volumetric strain. 

The elasticity modulus of MCC constitutive 

model depends on the strain history and is defined 

according to 

( )3 1 2t t t tE K+ += − (8) 
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The algorithm for implicit stress integration [4] 

of the MCC model, using the previously shown 

theoretical foundations, implemented in the PAK 

program and in the Python code at the integration 

point level, is shown in Table 1. 

Table 1. Stress integration algorithm for MCC model 

Known at the beginning of time step: 
t t+

e , 
t
e , 

t
σ , 

t p
e

A. Trial (elastic) solution:
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t t t d+ = +σ σ σ

Calculation of stress invariants: 
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B. Checking yield condition:

IF ( 0f  ) goto E
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Calculation of new stress invariants: 
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D. IF ( ( )ABS f TOL ) goto C with new d :

t t P t P Pd+ = +e e e

E. End: 
t t+
σ ,

t t P+
e

3. Parameter Calibration of the Constitutive

Model

The identification procedure is performed at the 

level of a single integration point, where 

homogeneous stress and strain states can be 

assumed. This localized approach isolates material 

behavior from boundary and geometric effects, 

making it directly comparable to standard 

laboratory tests. 

As inputs, the algorithm accepts stress-strain 

histories obtained experimentally. Depending on 

the test setup, either the applied loading (stress-

controlled) or the measured deformation (strain-

controlled) path can be imposed. The numerical 

simulation replicates these paths exactly, ensuring 

that the same increments of loading or deformation 

are evaluated. 

A scalar objective function quantifies the 

discrepancy between experimental and simulated 

responses. Commonly, this function is based on an 

error norm, such as the mean absolute or squared 

difference, possibly supplemented by weighting 

schemes that emphasize critical segments of the 

loading path (e.g., peak stress). Penalty terms 

enforce physical consistency by discouraging 

nonphysical behaviors, such as softening under 
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monotonic load or unbounded state variables. 

Simulations yielding unstable or divergent results 

incur large penalties. 

Each model parameter is confined to a 

predefined interval reflecting prior geotechnical 

knowledge. These bounds prevent exploration of 

unrealistic regimes, enhance numerical stability, 

and accelerate convergence by reducing the viable 

search space. 

A hybrid, two-stage optimization strategy 

ensures both global exploration and local precision: 

- Global Search: An evolutionary algorithm (e.g.,

differential evolution) samples the parameter space

broadly, locating low‐error regions and mitigating

entrapment in local minima.

- Local Refinement: A gradient‐based or quasi‐

Newton method (e.g., L‐BFGS‐B) is initialized

from the best global solution to achieve fine-scale

convergence, leveraging derivative information for

efficient adjustments.

This combined approach balances robustness and 

accuracy, yielding a parameter set that faithfully 

reproduces the experimental loading path. 

4. Validation

Parameter identification was performed using

oedometer test results, selected for their nearly 

homogeneous stress state within the specimen, 

which makes them particularly suitable for the 

proposed single‐point calibration procedure. Initial 

lower and upper bounds for each constitutive 

parameter were set based on physical plausibility 

and geotechnical knowledge, ensuring that the 

optimization remained within realistic regimes.  

Fig. 2. Oedometer test 1: Experimental and 

estimated dependence 

The resulting experimental stress-strain paths 

and the simulated model responses are overlaid in 

Fig. 2-Fig. 4, demonstrating close agreement across 

elastic, yield, and hardening phases. Quantitative 

assessment via maximum relative error and 

coefficient of determination (R²) confirms that the 

calibrated model reproduces laboratory 

observations within acceptable tolerance, thereby 

validating the robustness and fidelity of the 

automated identification algorithm. 

Fig. 3. Oedometer test 2: Experimental and 

estimated dependence 

Fig. 4 Oedometer test 3: Experimental and estimated 

dependence 

  After completing parameter identification, a 

numerical simulation of the same oedometer test 

was executed in the PAK finite element program 

under identical boundary and loading conditions.  

Fig. 5.  Results of numerical simulation of 

oedometer test 1 

The calibrated parameters were then applied in the 

Python-based integration routine over the same 

number of increments as in PAK. The results of 
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these simulations, alongside the experimental 

curves, are presented in Fig. 5-Fig. 7, further 

substantiating the equivalence of the standalone 

Python algorithm and the PAK implementation. 

Fig. 6. Results of numerical simulation of oedometer 

test 2 

Fig. 7. Results of numerical simulation of oedometer 

test 3 

The results indicate that the responses predicted 

by the automated identification closely match the 

experimental data, confirming the procedure’s 

accuracy. Discrepancies between the Python‑based 

and PAK simulations can be attributed to 

methodological differences: the Python routine 

performs point‑wise stress integration without 

element mesh interactions, whereas the PAK 

implementation relies on full finite element 

discretization. 

5. Conclusions

The conducted study demonstrates that the

automated parameter identification procedure 

provides a reliable and efficient means of 

calibrating the constitutive model. By relying on 

oedometer test data, the method ensured stable 

convergence and consistent results within realistic 

geotechnical ranges. 

The obtained simulations show that the approach 

is capable of capturing the full stress–strain 

behavior, including elasticity, yield and subsequent 

hardening. This consistency across both the 

standalone Python routine and the PAK program 

highlights the robustness and transferability of the 

calibration procedure. 

While discrepancies between implementations 

were observed, these stem primarily from the 

inherent differences between point-wise stress 

integration and finite element discretization. 

Importantly, such deviations do not undermine the 

predictive capability of the method but instead 

underline the complementary strengths of 

simplified integration routines and full numerical 

simulations. 

Overall, the proposed procedure offers a 

validated framework for parameter calibration that 

balances computational efficiency with accuracy. 

Its integration into broader numerical workflows 

can support more reliable geotechnical analyses and 

provide a solid foundation for future extensions to 

more complex soil constitutive models. 
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